Praxis Mathematics 5165 Domain 2: Functions and Calculus Welcome to your Praxis Mathematics 5165 Domain 2: Functions and Calculus 1. Praxis Mathematics (5165): Functions and Calculus Given the function \( f(x) = x^3 - 6x^2 + 11x - 6 \), for which values of \( x \) does \( f(x) = 0 \)? A. \( x = 1, 2, 3 \) B. \( x = -1, -2, -3 \) C. \( x = 0, 1, -1 \) D. \( x = 0, 2, 4 \) None 2. Praxis Mathematics (5165): Functions and Calculus What is the derivative of the function \( g(x) = \frac{x^2 - 1}{x^2 + 1} \)? A. \( \frac{2x(x^2 + 3)}{(x^2 + 1)^2} \) B. \( \frac{2}{(x^2 + 1)^2} \) C. \( \frac{4x}{(x^2 + 1)^2} \) D. \( \frac{2x}{(x^2 - 1)^2} \) None 3. Praxis Mathematics (5165): Functions and Calculus What is the limit of \( \frac{\sin(x)}{x} \) as \( x \) approaches 0? A. 0 B. 1 C. \( \frac{1}{2} \) D. \( \infty \) None 4. Praxis Mathematics (5165): Functions and Calculus Calculate the integral \( \int (3x^2 - 2x + 1) \, dx \). A. \( x^3 - x^2 + x + C \) B. \( x^3 - x^2 + C \) C. \( x^3 + x^2 + x + C \) D. \( x^3 - 2x^2 + x + C \) None 5. Praxis Mathematics (5165): Functions and Calculus What is the area under the curve of \( f(x) = 4 - x^2 \) from \( x = -2 \) to \( x = 2 \)? A. 16 B. 12 C. 8 D. 4 None 6. Praxis Mathematics (5165): Functions and Calculus What is the derivative of \( f(x) = \ln(\sqrt{x^2 + 1}) \)? A. \( \frac{x}{\sqrt{x^2 + 1}} \) B. \( \frac{1}{\sqrt{x^2 + 1}} \) C. \( \frac{x}{x^2 + 1} \) D. \( \frac{2x}{\sqrt{x^2 + 1}} \) None 7. Praxis Mathematics (5165): Functions and Calculus Evaluate the limit \( \lim_{x \to \infty} \frac{3x^3 + 2x^2 - x}{4x^3 - x^2 + 5} \). A. \( \frac{3}{4} \) B. 0 C. 1 D. \( \infty \) None 8. Praxis Mathematics (5165): Functions and Calculus If \( h(x) = e^{2x} \), what is the second derivative of \( h \) at \( x = 0 \)? A. 1 B. 2 C. 4 D. 8 None 9. Praxis Mathematics (5165): Functions and Calculus Find the critical points of the function \( f(x) = x^4 - 4x^2 \). A. \( x = 0, \pm 1 \) B. \( x = 0, \pm 2 \) C. \( x = \pm 1, \pm 2 \) D. \( x = \pm 1, \pm \sqrt{2} \) None 10. Praxis Mathematics (5165): Functions and Calculus What is the convergence interval of the power series \( \sum_{n=1}^{\infty} \frac{(x-1)^n}{n2^n} \)? A. \( -1 < x < 3 \) B. \( 0 < x < 2 \) C. \( 1 < x < 3 \) D. \( x > 1 \) None 11. Praxis Mathematics (5165): Functions and Calculus Calculate the volume of the solid formed by revolving the area between \( y = x^2 \) and \( y = x \) around the x-axis. A. \( \frac{\pi}{6} \) B. \( \frac{\pi}{4} \) C. \( \frac{\pi}{2} \) D. \( \pi \) None 12. Praxis Mathematics (5165): Functions and Calculus Find the derivative of the function \( f(x) = x^2e^{3x} \). A. \( 2xe^{3x} \) B. \( (2x + 3x^2)e^{3x} \) C. \( 2xe^{3x} + 3x^2e^{3x} \) D. \( 3x^2e^{3x} \) None 13. Praxis Mathematics (5165): Functions and Calculus What is the limit as \( x \) approaches infinity of \( \frac{e^x}{x^2} \)? A. 0 B. 1 C. Infinity D. Does not exist None 14. Praxis Mathematics (5165): Functions and Calculus Calculate the area between the curves \( y = \sin x \) and \( y = \cos x \) from \( x = 0 \) to \( x = \frac{\pi}{4} \). A. \( \frac{1}{\sqrt{2}} - \frac{1}{2} \) B. \( \frac{\sqrt{2}}{2} - \frac{1}{2} \) C. \( \frac{1}{2} - \frac{1}{\sqrt{2}} \) D. \( \frac{1}{2} - \frac{\sqrt{2}}{2} \) None 15. Praxis Mathematics (5165): Functions and Calculus If \( f(x) = \tan^{-1}(x) \), what is \( f''(0) \)? A. 0 B. 1 C. 2 D. Does not exist None 16. Praxis Mathematics (5165): Functions and Calculus Evaluate the integral \( \int_0^1 \ln(1 + x) \, dx \). A. 1 B. \( \ln(2) - \frac{1}{2} \) C. \( \frac{1}{2} \) D. \( \ln(2) \) None 17. Praxis Mathematics (5165): Functions and Calculus What is the Maclaurin series expansion of \( e^{x^2} \)? A. \( 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \cdots \) B. \( 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots \) C. \( 1 + x^2 + \frac{x^4}{2} + \frac{x^6}{3} + \cdots \) D. \( 1 + 2x + \frac{4x^2}{2!} + \frac{8x^3}{3!} + \cdots \) None 18. Praxis Mathematics (5165): Functions and Calculus Find the Taylor series for \( \cos(x) \) centered at \( \pi \). A. \( -1 + \frac{(x - \pi)^2}{2!} - \frac{(x - \pi)^4}{4!} + \cdots \) B. \( 1 - \frac{(x - \pi)^2}{2!} + \frac{(x - \pi)^4}{4!} - \cdots \) C. \( -1 - \frac{(x - \pi)^2}{2!} - \frac{(x - \pi)^4}{4!} - \cdots \) D. \( 1 + \frac{(x - \pi)^2}{2!} - \frac{(x - \pi)^4}{4!} + \cdots \) None 19. Praxis Mathematics (5165): Functions and Calculus Determine the radius of convergence for the series \( \sum_{n=1}^{\infty} \frac{n!x^n}{n^n} \). A. \( e \) B. \( \frac{1}{e} \) C. 1 D. Infinity None 20. Praxis Mathematics (5165): Functions and Calculus If \( f(x) = \int_{0}^{x} t^2 e^{t^3} dt \), what is \( f'(x) \)? A. \( x^2 e^{x^3} \) B. \( 3x^2 e^{x^3} \) C. \( e^{x^3} \) D. \( x e^{x^3} \) None 1 out of 20 Time is Up! Time's up